4 Search Results for “ 650”

Refine search results

  • ChorusX

    The industry’s most advanced acoustic sensing and analysis platform Bringing a new level of clarity, precision, and certainty to well system acoustics A flowing well is full of sound encoded with information about the flow that created it. This, and the fact that sound energy penetrates through well and reservoir materials, is why acoustics has become a powerful diagnostic technique for locating and characterising flow. However, the fidelity and resolution of the sound recording, and the effectiveness of processing and analysis technologies all have a direct bearing on the accuracy and certainty of the diagnosis and resulting decisions.   The well reservoir system is a challenging environment for capturing and analysing the high-fidelity sound required for precise diagnostics. There is a combination of materials and fluids with different acoustic properties, multiple boundaries and mechanical noise that act together to create a complex spectrum of acoustic energy. Decoding the sound and extracting useful flow information from this cacophony requires a special combination of technology, expertise, and experience.   TGT has been advancing the use of acoustics to locate and characterise flow in the well system for two decades. The Chorus brand is already recognised for its sensitivity and dynamic range when capturing high-fidelity flow sounds. Our new generation ChorusX platform takes this acoustic capability to a whole new level to deliver exceptional precision, clarity and certainty. ChorusX brochure ChorusX ingredients ChorusX is the sum of many parts that work in concert to deliver a range of important benefits to analysts and customers. Each ingredient is special in its own way, but the big wins occur when they are multiplied together.   Features Explained Benefits ChorusX has been designed to overcome the limitations of conventional acoustic technology and to provide the three essential capabilities of an effective flow-finding resource.   Reach Ultrahigh sensitivity and extreme dynamic range give ChorusX the spatial and audible reach to record the furthest and quietest flows.   Identify Four new high-definition acoustic maps enable analysts to recognise and distinguish different types of flow easily and confidently.   Locate Eight high-definition array sensors and a unique phase analysis engine work join forces to pinpoint flow sources everywhere in the well system in depth, and radial distance. Diagnostics products and applications Well systems perform by connecting the right fluids to the right places, and mapping flow dynamics downhole is essential to keeping wells safe, clean and productive. ChorusX provides asset teams with the flow insights they need to manage well and reservoir performance more effectively.   As an integral part of TGT’s ‘True Flow’ and ‘True Integrity’ diagnostic systems, ChorusX capability is available through a range of application-specific answer products. Through these answer products, ChorusX delivers clear, complementary answers that enable analysts and customers to reach an accurate diagnosis more efficiently. A robust and accurate picture of the well system enables better decisions and positive outcomes. This means that, when remediation plans are being implemented, there is a greater prospect of first-time success.   True Flow products help asset teams to understand flow dynamics between the reservoir formations and the well completion. Notably, these answer products reveal flow where it matters most—at the reservoir. Some of the distinct True Flow applications and benefits brought by ChorusX include fracture assessment, delineating active formations, and distinguishing between reservoir flow and completion flow.   True Integrity / Seal Integrity products help asset teams to validate the performance of seals and barriers throughout the well system, including packers, cemented annuli, tubulars, and valves. Typical applications for ChorusX include revealing low-rate leaks, tracing the source of B and C annulus pressure, and resolving leaks in close proximity to each other. Resources Platform flyers(8) Hardware specifications(7) Case studies(36) Technical papers(128) Intellectual property(48) More(45) Product flyers(22) System flyers(2) White papers(0) Product animations(21) Resources

  • Energy and resource efficiency

    Energy and resource efficiencyEnergy and resource efficiency Overview Infrastructure performance Intervention efficiency Improve injection performance Reduce water production Go to section OverviewInfrastructure performanceIntervention efficiencyImprove injection performance Reduce water production Home Search Results Producing hydrocarbons requires energy. Turbines and diesel generators account for 70% of upstream CO2 emissions. Our diagnostics can help you become more energy efficient and reduce your carbon overhead.Improve infrastructure performance Building and operating hydrocarbon extraction infrastructure represents a huge investment in energy, capital, time, materials and people resources. Maximising the return on that resource must be achieved, while protecting people and the planet. If a well or reservoir is not producing to its full potential during its life then the resource that built or operates it is not being fully leveraged and some is being wasted. Equally, if maintenance and workover resources are being utilised, they should operate efficiently and contribute to overall asset performance with the goal of keeping wells safe, clean and productive.   All TGT diagnostic products are adept at revealing inefficiencies and guiding measures that enable existing infrastructure and resources to operate at maximum efficiency. For example, if a well is producing at high water cut, our Total Flow product will reveal the exact sources of water to enable targeted remediation. True Integrity products can be used proactively to identify casing weakness before the casing fails, helping to maintain asset performance and preventing more costly scenarios. Equally, because workover and rig resources are better targeted, time and energy is saved in getting the job done right first time. TOTAL FLOW CASE STUDYPRIMARY SEAL INTEGRITY CASE STUDY Drilling a single deepwater well can produce more than 20 ktCO2 Improve intervention efficiency Well delivery and intervention operations such as drilling, fracking, workovers, decommissioning [P&A] and diagnostic surveys require energy intensive surface equipment. Rigs, trucks, and pumps derive power from diesel engines or gas turbines that emit CO2 when the fuel is burned. A typical semi-submersible drilling rig emits roughly ~130 tCO2 per day and a Light Well Intervention vessel around 30 tCO2 per day. Improving efficiency and minimising the time to perform operations is a key factor in reducing energy consumption and emissions.   All TGT diagnostic products deliver insights that enable all types of operations to be carefully planned and precisely targeted so they can be executed efficiently with precision. Also, by enabling ‘lighter’ or ‘rigless’ interventions, our diagnostics can be deployed with minimal carbon footprint before heavier equipment is mobilised. Lastly, because through-barrier diagnostics provide a more complete picture, we provide maximum information in the minimum amount of time. Time savings translate to both cost and carbon savings and our aim is make every hour count. MULTI TUBE INTEGRITY CASE STUDY A typical Jack-up rig emits 70 tCO2 per day. Improve injection performance Most oil reservoirs will inevitably require additional pressure support to maintain production and improve oil recovery. Water injection is used widely for this purpose and many oilfields are injected with tens to hundreds of thousands of barrels per day. Pumping water is energy intensive and the resulting CO2 emissions can range from 1-2 kgCO2 per barrel. In fact, water injection is responsible for ~40% of total CO2 emissions for a typical oilfield.   Making matters worse, well completion and formation integrity issues can lead to water being diverted away from the target reservoir. This can result in abnormally high injection rates, reduced field production performance, and high water cut in producer wells. TGT’s True Flow products are being used globally by operators to ensure that all injected water is reaching the target and revealing where it is not. In many cases, these diagnostics lead to a significant reduction in water volumes and CO2 emissions, and increased field production. RESERVOIR FLOW CASE STUDYFIBRE FLOW CASE STUDY Pumping 10,000 barrels of water per day produces 5.4 ktCO2 annually Reduce water production High water cut is a persistent industry challenge responsible for unnecessarily high CO2 emissions and higher carbon per barrel. Excess water needs to be managed at surface, treated then reinjected or disposed of, and this requires energy. Also, excess water often means less oil, reduced recovery and longer production times, increasing emissions even further. And complicating the issue, produced water may be channeling from several elusive sources hidden behind the casing.   In many cases, excess water cut can be minimised or cured. If the operator can identify the true source of water downhole, measures can be taken to shut-off the water and restore oil production to lower carbon and economic levels. TGT’s True Flow products are used widely for this purpose. Unlike conventional diagnostics that can only detect water entering the wellbore, TGT’s through-barrier diagnostics can reveal the true source behind casing, enabling effective remediation, improved recovery rates and reduced carbon emissions. MULTI-SEAL INTEGRITY CASE STUDYTOTAL FLOW CASE STUDY High water-cut leads to higher CO2 per barrel and lower oil production rates.

  • dot
    100-years of innovation

    Most successful brands have at their core a spark of genius and inspiration that continue to drive it forward. For TGT, that spark came from professor Nikolay Neprimerov. May 2021 marks the 100th anniversary since the birth of world-renowned physicist, Doctor of Technical Sciences, and professor of physics at the Kazan State University Nikolay Neprimerov. His innovative spirit and theories of fluid displacement in oil reservoirs inspired two young scientists Arthur Aslanyan and Georgy Vasilyev, to establish TGT back in 1998.   “Together with Professor Nikolay Neprimerov, my university professor, we challenged conventional methods for assuring well flow and well integrity”, said Arthur Aslanyan, co-founder of TGT. “Professor Neprimerov told me to ‘learn what the industry needs, understand those needs and create the solution to answer them’, so that is exactly what we set out to do”.   Professor Neprimerov dedicated more than 60-years of his scientific career to researching hydrocarbon recovery. Along with research and outreach activities, Neprimerov contributed to nurturing a young generation of scientists. More than 650 students graduated from the Department of Radioelectronics, which he established and led for many years. Neprimerov created a multifaceted scientific school of oil reservoir studies and engineering, dedicated to various research and industry-related domains. He shared his knowledge widely, authoring more than 150 scientific papers and nine monographs.   For his contribution to science, he was awarded numerous honours and medals, including one of the most coveted – the ‘Russian Federation National Awards in Science and Technology’.   Many of Neprimerov’s ideas form the basis of our powerful diagnostics that help energy companies worldwide improve their performance in a sustainable manner, keeping wells safe, clean and productive. He used to say that the secret of his creative longevity was to serve science for the benefit of society.   His legacy and inspiration continues to this day.

  • dot
    Case studies
    CS027 Multi Seal Integrity

    Challenge The completion string of a gas producer was upsized from 3 ½’’ x 4 ½’’ to 4 ½’’ x 5 ½’’ with 13% chrome tubing to enhance production. Prior to starting the workover, the A-annulus was successfully pressure tested to 1,500psi. The old completion string was cut above the AHC packer, retrieved and replaced with the new ‘13CR95’ tubing together with a new packer. An A-annulus leak was then observed after setting the packer, but with no TCA communication.   Before continuing, the operator needed to understand the integrity dynamics at play and ensure that the new packer was sealing. Conventional diagnostics could have meant another costly workover, lost production, and the risk of damage to the expensive 13CR95 tubing joints. All of which were clearly undesirable. Multi Seal evaluates the seal performance of multiple barriers, locating leaks and flowpaths throughout the well system, from the wellbore to the outer annuli. Solution To identify the integrity breach, TGT designed a diagnostic programme utilising the ‘True Integrity’ system with Chorus (acoustic) and Indigo technology. Slickline conveyance was used for efficient and low cost rigless operation, and minimal footprint.   Two survey passes were deployed, one with the well shut-in and another with continuous water injection into the A-annulus. During shut-in conditions, the baseline temperature and acoustic responses confirmed that there was no cross flow or lateral flow anywhere in the well system.   Injection was then started in A-annulus and the acoustic and temperature surveys were repeated. This time, the temperature profile exhibited a cooling effect caused by water being forced into A-annulus, but there was no temperature difference across the upper packer.   Notably, clear acoustic responses were evident at two intervals under injection conditions. A high amplitude wide frequency band acoustic signature, typical of ‘leak flow’ was observed at X175 ft. Also, a lower amplitude, lower frequency signal was observed around X650 ft. No acoustic signal was observed across the upper packer confirming it was sealing properly. Multi Seal Integrity answer product showing comparison between measurements acquired during shut-in and injection conditions. The primary leak point is clearly visible at X175 ft, and a minor leak interval is evident around X650 ft. Result The analyst confirmed the leak point in the 9-5/8” casing at X175 ft. The operator was able to assess the integrity of the well and decided not to remediate the casing leak, deciding instead to operate the well with the proper monitoring and risk mitigation plans in place.