4 Search Results for “ 386”

Refine search results

  • dot
    Case studies
    CS032 Multi Seal Integrity

    Challenge The gas-lift producer in this case study had been shut-in due to sustained annulus pressure (200 bar) and excessive volumes of H2S that could not be handled by the production facilities. The operator wanted to assess primary barrier integrity and guide a workover programme. Traditional diagnostics methods, such as production logging tools (PLT) and temperature logs, were deemed inefficient because they could scan only the production tubing and were unable to confirm the integrity of the packer and production casing. Identifying and shutting off the source of the water with high H2S content would protect the environment and deliver a production gain of 2,050 barrels of oil per day (BPD). Eliminating the production of highly toxic H2S and ensuring its containment within the well system would also deliver important environmental and safety benefits. Figure 1: Failures in the gas-lift mandrels (or gas-lift valves) were indicated by Chorus spectral acoustic diagnostics. Conventional production logging tools failed to identify any of these leaks. Solution TGT’s True Integrity system with Chorus technology uses spectral acoustic methods to assess barrier sealing performance. The system offers a large scanning radius and the sensitivity to detect even small leaks. The ability to indicate failures in the tubing, in the casing behind the tubing, and in key completion components such as the production packer and gas-lift mandrels makes this technology highly effective at establishing the best approach for remediation when barrier failures occur.   High precision surveys across the reservoir zone characterised the flow and its content, thereby guiding operations for shutting off the water zone with high H2S content. Traditional PLT methods would not have been enough to make this identification as the water source may be above or below the perforated interval. The diagnostics also revealed the effectiveness of cement sealing across the reservoir zones. Figure 2: Reservoir crossflow under shut-in and bleed-off conditions. The zone at 13,440 ft shows flow upwards and downwards and charges the wellbore with water. This zone was isolated using a straddle packer. Result The Multi Seal Integrity product with Chorus technology revealed leaks in all four of the well’s gas-lift mandrels (Figure 1). Having confirmed that the failures were only in the mandrels, the operator changed them using the slickline, thereby eliminating the issue of sustained annulus pressure. Traditional sensors, such as spinner, resistivity and capacitance had not identified an issue in the mandrels, which indicates that the leaks were below their detection thresholds.   TGT’s diagnostics solution also identified an active crossflow between the perforated intervals in this well (Figure 2). The direction and content of the crossflow were determined, indicating which zone had to be isolated. Verifying cement integrity behind the casing enabled the operator to select a cost-effective isolation programme that involved running straddle packers across the interval that was producing the water containing H2S.   After the workover, the well returned to H2S-free production with oil rate increased by 2,050 BPD and reduction in water cut from 96 to 80%. Increased oil production at a reduced water cut boosts recovery efficiency, enabling the operator to extract hydrocarbons in a shorter time period, and to reduce energy consumption and carbon- per-barrel over the life of field. In addition, having less water to manage and treat at surface reduces the energy requirement and emissions associated with these processes.

  • Energy and resource efficiency

    Energy and resource efficiencyEnergy and resource efficiency Overview Infrastructure performance Intervention efficiency Improve injection performance Reduce water production Go to section OverviewInfrastructure performanceIntervention efficiencyImprove injection performance Reduce water production Home Search Results Producing hydrocarbons requires energy. Turbines and diesel generators account for 70% of upstream CO2 emissions. Our diagnostics can help you become more energy efficient and reduce your carbon overhead.Improve infrastructure performance Building and operating hydrocarbon extraction infrastructure represents a huge investment in energy, capital, time, materials and people resources. Maximising the return on that resource must be achieved, while protecting people and the planet. If a well or reservoir is not producing to its full potential during its life then the resource that built or operates it is not being fully leveraged and some is being wasted. Equally, if maintenance and workover resources are being utilised, they should operate efficiently and contribute to overall asset performance with the goal of keeping wells safe, clean and productive.   All TGT diagnostic products are adept at revealing inefficiencies and guiding measures that enable existing infrastructure and resources to operate at maximum efficiency. For example, if a well is producing at high water cut, our Total Flow product will reveal the exact sources of water to enable targeted remediation. True Integrity products can be used proactively to identify casing weakness before the casing fails, helping to maintain asset performance and preventing more costly scenarios. Equally, because workover and rig resources are better targeted, time and energy is saved in getting the job done right first time. TOTAL FLOW CASE STUDYPRIMARY SEAL INTEGRITY CASE STUDY Drilling a single deepwater well can produce more than 20 ktCO2 Improve intervention efficiency Well delivery and intervention operations such as drilling, fracking, workovers, decommissioning [P&A] and diagnostic surveys require energy intensive surface equipment. Rigs, trucks, and pumps derive power from diesel engines or gas turbines that emit CO2 when the fuel is burned. A typical semi-submersible drilling rig emits roughly ~130 tCO2 per day and a Light Well Intervention vessel around 30 tCO2 per day. Improving efficiency and minimising the time to perform operations is a key factor in reducing energy consumption and emissions.   All TGT diagnostic products deliver insights that enable all types of operations to be carefully planned and precisely targeted so they can be executed efficiently with precision. Also, by enabling ‘lighter’ or ‘rigless’ interventions, our diagnostics can be deployed with minimal carbon footprint before heavier equipment is mobilised. Lastly, because through-barrier diagnostics provide a more complete picture, we provide maximum information in the minimum amount of time. Time savings translate to both cost and carbon savings and our aim is make every hour count. MULTI TUBE INTEGRITY CASE STUDY A typical Jack-up rig emits 70 tCO2 per day. Improve injection performance Most oil reservoirs will inevitably require additional pressure support to maintain production and improve oil recovery. Water injection is used widely for this purpose and many oilfields are injected with tens to hundreds of thousands of barrels per day. Pumping water is energy intensive and the resulting CO2 emissions can range from 1-2 kgCO2 per barrel. In fact, water injection is responsible for ~40% of total CO2 emissions for a typical oilfield.   Making matters worse, well completion and formation integrity issues can lead to water being diverted away from the target reservoir. This can result in abnormally high injection rates, reduced field production performance, and high water cut in producer wells. TGT’s True Flow products are being used globally by operators to ensure that all injected water is reaching the target and revealing where it is not. In many cases, these diagnostics lead to a significant reduction in water volumes and CO2 emissions, and increased field production. RESERVOIR FLOW CASE STUDYFIBRE FLOW CASE STUDY Pumping 10,000 barrels of water per day produces 5.4 ktCO2 annually Reduce water production High water cut is a persistent industry challenge responsible for unnecessarily high CO2 emissions and higher carbon per barrel. Excess water needs to be managed at surface, treated then reinjected or disposed of, and this requires energy. Also, excess water often means less oil, reduced recovery and longer production times, increasing emissions even further. And complicating the issue, produced water may be channeling from several elusive sources hidden behind the casing.   In many cases, excess water cut can be minimised or cured. If the operator can identify the true source of water downhole, measures can be taken to shut-off the water and restore oil production to lower carbon and economic levels. TGT’s True Flow products are used widely for this purpose. Unlike conventional diagnostics that can only detect water entering the wellbore, TGT’s through-barrier diagnostics can reveal the true source behind casing, enabling effective remediation, improved recovery rates and reduced carbon emissions. MULTI-SEAL INTEGRITY CASE STUDYTOTAL FLOW CASE STUDY High water-cut leads to higher CO2 per barrel and lower oil production rates.

  • True Flow Products
    Reservoir Pressure

    Evaluate and quantify formation pressure Knowing reservoir pressure is fundamental to managing well and reservoir performance more effectively. But assessing formation pressure behind casing using traditional techniques can be costly, time consuming and disruptive. Reservoir Pressure provides formation pressure information behind casing, bringing the critical insights needed without the cost and disruption of more invasive techniques. Delivered by our True Flow system with Chorus (acoustic) technology and proprietary Polygon modeling code, Reservoir Pressure provides the clarity and insight needed to manage well and reservoir performance more effectively. Reservoir Pressure has become an invaluable resource for operators managing assets to improve or maintain well and reservoir performance. Challenges Quantify formation pressure behind casing Poor production or injectivity performance Unexpected change in well system performance Unexpected water or gas breakthrough Suspected cross-flow Recalibrating reservoir model Benefits Determine actual formation pressure behind casing Better well and reservoir management decisions, precisely targeted Improve well system performance Calibrate reservoir model Resources Product flyers(22) Case studies(36) Product animations(21) Platform flyers(8) System flyers(2) More(183) Hardware specifications(7) Technical papers(128) Intellectual property(48) White papers(0) Resources Related Systems & Platforms True Flow System Well systems connect reservoirs to the surface so injectors and producers can flow to and from the right place. LEARN MORE Platforms Chorus Cascade Indigo Maxim MediaReservoir Pressure provides the clarity and insight needed to manage well system performance more effectively.Well sketch shows a range of pressures exhibited at different formation layers that Reservoir Pressure can evaluate.Indicative logplot for Reservoir Pressure Estimation of pressures for each layer from noise powers at three flow rates (black bars) matched the RFT pressure data (red marks) that has been recorded in nearby wells, and in the same well previously.

  • dot
    Quality Management & HSE Standards

    TGT Oilfield Services, the market leader in through-barrier diagnostic systems for the oilfield is pleased to announce that it has successfully completed the global auditing requirements for several essential quality, environmental and health & safety standards, namely ISO 9001:2015, ISO 14001:2015 and OHSAS 18001:2007. The certifications, which were awarded following a full-scale audit by IMQ, a European leader in conformity assessments for the electrical, electronic, gas and energy industries, demonstrates TGT’s commitment to the highest standards in quality management, environmental management and occupational health and safety management systems.   Commenting on the certification, Mohamed Hegazi, TGT’s chief executive said, “TGT’s commitment to quality, the environment and safety is integral to everything we do. Throughout our global business units, technology centre, interpretation centres and manufacturing facility, our staff take enormous pride in their work, and these ISO and OHSAS certifications will give our customers even more confidence that they are dealing with a company that rigorously adheres to the highest standards.   ISO 9001:2015 specifies requirements for a quality management system where an organisation needs to “demonstrate its ability to consistently provide products and services that meet customer and applicable statutory and regulatory requirements” and “aims to enhance customer satisfaction through the effective application of the system.” ISO 14001:2015 specifies the requirements for an environmental management system that an organisation can use to enhance its environmental performance, and OHSAS (Occupational Health and Safety Assessment Series)18001: 2007 is an internationally applied standard for occupational health and safety management systems. Quality assuranceHSSE management