Diagnosing flow challenges in horizontal wells with smart completions

Vener Nagimov, Principal Domain Champion, TGT
Artur Giniyatullin, Snr Well Log Analyst
Presenter

Vener Nagimov, Principal Domain Champion

Artur Giniyatullin, Snr Well Log Analyst
Learning outcomes

1. TGT Through-barrier Diagnostics is a key to assess reservoir flow profile and individual zones isolation.
2. Through-barrier diagnostics can significantly improve smart wells completion design.
3. Workover planning based on conventional PLT technologies are not sufficient in smart wells. Total Flow product is able to deliver accurately flow geometry around the wellbore for optimum workover planning.
Smart Completion

Better Reservoir Management

Zonal Production Control: ICD, AICD, ...

Zonal Stimulation

Zonal Isolation: Packers

Zonal Performance Monitoring: P, T, ...

Sand Control: Screens, Gravel Pack

Multi-laterals
Smart Completion: Flow Challenges

Diagnosing Flow Challenges In Horizontal Wells With Smart Completion
What is the Acoustic Sound Heard in Horizontal Wells?
Acoustic Data Interpretation

Wellbore Flow

Acoustic Data Interpretation

Wellbore Flow

Wellbore Flow

Modelling Procedure

Modelling results

- 20% (20 m³/d)
- 80% (80 m³/d)
Cascade® Platform
Profile Accuracy

Variable parameters

Zonal productivity σ_1

Zonal productivity σ_2
Profile Accuracy

<table>
<thead>
<tr>
<th>WELL</th>
<th>LITHOLOGY</th>
<th>PERM</th>
<th>TEMPERATURE</th>
<th>ARRAY CAP</th>
<th>CHORUS SPECTRUM</th>
<th>RESERVOIR FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td>1000</td>
<td>32.5°C</td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1 kHz</td>
<td>100 dB SPL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.3 kHz</td>
<td>100 dB SPL</td>
</tr>
</tbody>
</table>

Variable parameters

Zonal productivity σ_1

Zonal productivity σ_2

Do not reproduce
Profile Accuracy

Variable parameters:

Zonal productivity σ_1

Zonal productivity σ_2
Profile Accuracy

Zonal accuracy ±5%

Zonal accuracy ±2%
Case 1
Diagnostics in Smart Horizontal Wells in Sandstone Reservoir
Case 1: Reservoir Description and Geological Challenges

Geological Challenges:
- Thin oil rim thickness (4-20 m)
- Gas cap (up to 35 m)
- Aquifer (more than 40 m)
- Variable and heterogeneous deposits
- Reservoir is represented by poorly consolidated sandstone
- High oil viscosity in reservoir condition (>50 cP)
- Permeability in heteroliths:
 - Tidal Flat (Delta) facies: ~500-1000 mD,
 - Channel facies: up to 10000 mD

Reservoir cross section
Faults in mid part of reservoir
Net pay ~ 11 m
Net pay up to 4 m

Delta system
Channel facies (sandstone) up to 10000 mD
Tidal Flat (Delta) facies (clay sandstone) 100-1000 mD
Diagnosing Flow Challenges In Horizontal Wells With Smart Completion

Case 1: Well Information

- **Completion:**
 - 7” casing and 4-1/2” liner
 - 7 separated zones
 - Swellable packers
 - Autonomous ICD (AICD)
 - Sand screens

- Significant WC growth
- Insignificant increase of GOR
Case 1: Through-barrier Diagnostics Results

Reservoir Flow Profile

<table>
<thead>
<tr>
<th>Regime</th>
<th>q_1</th>
<th>q_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sand

- 1st Regime
- 2nd Regime
- 3rd Regime

Chorus Spectrum

- 1st Regime
- 2nd Regime
- 3rd Regime

Capacitance

- 1st Regime
- 2nd Regime

Temp

- 1st Regime
- 2nd Regime

Pressure

- 1st Regime
- 2nd Regime

CCL

- 1st Regime
- 2nd Regime

GR

- 1st Regime
- 2nd Regime

Perm

- 1st Regime
- 2nd Regime

Lith

- 1st Regime
- 2nd Regime

Well Sketch

- 1st Regime
- 2nd Regime

PLT

- 1st Regime
- 2nd Regime

Depth, m

- 1st Regime
- 2nd Regime

Positive sand control overall

- ZONE A
- ZONE B

Wellbore pressure @ 1824 m:
- Static pass = 104 atm
- 1st flow regime = 86.3 atm, ∆P = 17.7 atm
- 2nd flow regime = 75.8 atm, ∆P = 28.2 atm

Main inflow of water

Main inflow by PLT

Diagnosing Flow Challenges In Horizontal Wells With Smart Completions
Completion Strategy Improvement

Diagnosing Flow Challenges In Horizontal Wells With Smart Completions
Case 2
Diagnostics in Smart Horizontal Wells in Carbonate Reservoir
Introduction to Case 2 - Water Shut-off Based on Conventional PLT

- Water from RSS4 and RSS1 by PLT
- Mechanical water shut-off by closing RSS4 (due to its high WC and low oil contribution): no change in either the water or oil production.
- Further steps: setting a composite bridge plug above RSS1: WC remained the same, but a drop in oil productivity was observed.
- Conclusion: mechanical water shut-off was considered a **failure**, due to a combination of inaccurate diagnostics of the water ingress and complex near wellbore fluid movement.

Case 2: Smart Well in Carbonate Reservoir

Packer bypassing flow by Chorus

Active Zones by Chorus

Inflow from RSS

Water ingress from below via fractured reservoir
Case 2: Smart Well in Carbonate Reservoir

<table>
<thead>
<tr>
<th>ARRAY PLT</th>
<th>WELL SKETCH</th>
<th>LITHOLOGY</th>
<th>PRESSURE</th>
<th>TEMPERATURE</th>
<th>CHORUS SPECTRUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFILE</td>
<td>PROFILE</td>
<td>TVD</td>
<td>TVD</td>
<td>FLOWING</td>
<td>00 kHz</td>
</tr>
<tr>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>82.25 C</td>
<td>81 dB</td>
</tr>
<tr>
<td>RSS5</td>
<td>RSS4</td>
<td>RSS3</td>
<td>RSS1-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>P3</td>
<td>P2</td>
<td>BP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Inflow from RSS3**: Acoustic signature caused by packer bypassing flow from RSS3.
- **Flow from below**: Acoustic signature caused by fracture flow. Water ingress from below survey zone via fractured formation.

```
Diagnosing Flow Challenges In Horizontal Wells With Smart Completions
```

Do not re-produce
Conclusions

- TGT’s True Flow System provides a complete assessment of reservoir flow dynamics and zonal isolation, in horizontal wells.
- TGT Through-barrier diagnostics can significantly improve smart well completion designs.
- Workover strategy based on conventional PLT is not sufficient in smart wells.
- Horizontal well workovers can be complex and costly. ‘Total Flow’ diagnostics provide the insights you need to plan and execute them efficiently and effectively.
Thank you

Vener Nagimov
Principal Domain Champion
vener.nagimov@tgtdiagnostics.com
M +7 917 394 8252

Artur Giniyatullin
Snr Well Log Analyst
artur.Giniyatullin@tgtdiagnostics.com
M +60 1 1617 40288